inner not peace

Theme Preview

2019.03.31

Headings

# H1
## H2
### H3
#### H4
##### H5
###### H6

H1

H2

H3

H4

H5
H6

Paragraphs

This is a paragraph.
I am still part of the paragraph.

New paragraph.

This is a paragraph. I am still part of the paragraph.

New paragraph.

Image

Web Image

![Web Image](https://i.loli.net/2019/04/13/5cb1d33cf0ee6.jpg)

Local Image

![Local Image](100.jpg)

Web Image

Web Image

Local Image

Local Image

Block Quotes

> This is a block quote

This is a block quote

Code Blocks

```javascript
// Fenced **with** highlighting
function doIt() {
    for (var i = 1; i <= slen ; i^^) {
        setTimeout("document.z.textdisplay.value = newMake()", i*300);
        setTimeout("window.status = newMake()", i*300);
    }
}
```
function doIt() {
    for (var i = 1; i <= slen ; i^^) {
        setTimeout("document.z.textdisplay.value = newMake()", i*300);
        setTimeout("window.status = newMake()", i*300);
    }
}

Tables

| Colors        | Fruits          | Vegetable         |
| ------------- |:---------------:| -----------------:|
| Red           | *Apple*         | [Pepper](#Tables) |
| ~~Orange~~    | Oranges         | **Carrot**        |
| Green         | ~~***Pears***~~ | Spinach           |
Colors Fruits Vegetable
Red Apple Pepper
Orange Oranges Carrot
Green Pears Spinach

List Types

Ordered List

1. First item
2. Second item
3. Third item
  1. First item
  2. Second item
  3. Third item

Unordered List

- First item
- Second item
- Third item
  • First item
  • Second item
  • Third item

Math

$$
evidence\_{i}=\sum\_{j}W\_{ij}x\_{j}+b\_{i}
$$

$$
AveP = \int_0^1 p(r) dr
$$

When $a \ne 0$, there are two solutions to \(ax^2 + bx + c = 0\) and they are
$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$

$$ evidence_{i}=\sum_{j}W_{ij}x_{j}+b_{i} $$

$$ AveP = \int_0^1 p(r) dr $$

When $a \ne 0$, there are two solutions to (ax^2 + bx + c = 0) and they are $$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$

Emoji

This is a test for emoji. 😄 🙈 😸 🍉